
11 - 15 DECEMBER ANTWERP BELGIUM

1

www.javapolis.com 2

Why So Slow?

Debunking Speculative Tuning

Heinz Kabutz
Java Specialist
Maximum Solutions
http://www.cretesoft.com

Kirk Pepperdine
Performance Specialist
Kodewerk Ltd.
http://www.kodewerk.com

11 - 15 DECEMBER ANTWERP BELGIUM

3

Our Typical Customer

Customer JoGoSlo Ltd calls us in desperation
 Millions of $$$$ invested
 Users complain about poor performance

• Customers are starting to abandon the project
Developers in a panic
 6 man months already spent “tuning” with no results
 Can almost reproduce the problem
 Still have some ideas of what to do
 But, management has lost confidence

We have 5 days to diagnose problem and propose fix

11 - 15 DECEMBER ANTWERP BELGIUM

4

Tuning Tool for Managers

11 - 15 DECEMBER ANTWERP BELGIUM

5

Tuning Tool for Engineers – “The Box”

11 - 15 DECEMBER ANTWERP BELGIUM

6

Heinz Kabutz

Author of The Java Specialists’
Newsletter
Sun Java Champion
http://www.cretesoft.com
Lives in Greece
Consults and trains companies about Java

11 - 15 DECEMBER ANTWERP BELGIUM

7

Kirk Pepperdine

Engaged in performance tuning world wide.
Co-author of
www.javaperformancetuning.com
Editor www.theserverside.com
Sun Java Champion
Speaks frequently about performance tuning
http://www.kodewerk.com

11 - 15 DECEMBER ANTWERP BELGIUM

8

Topics

Dynamic nature of systems
Measure don’t guess
People
Hardware/OS
JVM
Application
External systems
Putting it all together

www.javapolis.com 9

Time to Setup

11 - 15 DECEMBER ANTWERP BELGIUM

10

Time to Setup TipsDB

Download from http://www.cretesoft.com/outgoing/
javapolis.zip
Set path to your JDK in the setenv.bat
Go into tipsdb directory
Call startDB.bat
Call createDB.bat
Call appserverStart.bat
Connect to http://localhost:8080/tips/wildcard
Connect to http://localhost:8080/tips/keyword

11 - 15 DECEMBER ANTWERP BELGIUM

11

Dynamic Nature of Systems

 Knowing what to measure and how to
measure it makes a complex world much
less so

Steven D. Levitt
Stephen J. Dubner

Authors of Freakonomics

11 - 15 DECEMBER ANTWERP BELGIUM

12

Dynamic Nature of Systems

Performance tuning is a complex task
 Need to reverse engineer complex systems
 Need right view of the system

• Most useful view comes from measurements
We will take introductory look at
 What to measure
 How to measure
 How to understand the measurements

11 - 15 DECEMBER ANTWERP BELGIUM

13

Importance of the Environment

Need to understand all elements in the environment
Changing elements of a system can change the
dynamics of that system
 E.g. different users, CPUs, network

11 - 15 DECEMBER ANTWERP BELGIUM

14

Importance of Tooling

Tooling allows us to see what is otherwise invisible

11 - 15 DECEMBER ANTWERP BELGIUM

15

Importance of process

Process or ways of investigating the problem can
change or hide the problem
Systematic investigation

11 - 15 DECEMBER ANTWERP BELGIUM

16

Holistic View

11 - 15 DECEMBER ANTWERP BELGIUM

17

Dynamic Nature of Systems

Systems by their nature are dynamic
 Mix of static and dynamic elements

Static aspects of a Java based system
 Not bottlenecks onto themselves
 Hardware/OS

• Defines the physical constraints of the system
 Java Virtual Machine

• Primarily a translation layer
 Application

• Expression of what is needed to be done

11 - 15 DECEMBER ANTWERP BELGIUM

18

Dynamic Nature of Systems

Dynamic aspects of a system
 People

• Abstraction for system drivers
– Batch processing
– External systems

• create flows through the system
– maybe beyond the capacity of the system
– Can put pressure on pinch points (or bottlenecks) in

the system
How does this work?

11 - 15 DECEMBER ANTWERP BELGIUM

19

Resource Contribution

11 - 15 DECEMBER ANTWERP BELGIUM

20

Forward Propagation of Actions

People drive the application
Application drives the JVM
 Direct consequence of what the people are asking
 And how application was coded

JVM Drives the hardware
 Direct consequence of what the application is asking
 And how JVM was coded and configured

Hardware executes instructions
 Limited by speed and capacity

11 - 15 DECEMBER ANTWERP BELGIUM

21

Backward Propagation of Problems

Problem: hardware lacks capacity or is slow
 people experience poor response times

Problem: JVM is poorly configured
 People experience poor response times

Problem: Application suffers from contention
 People experience poor response time

Our starting point; people are experiencing poor
response times
How do we start our investigation?
 It is at this point JoGoSlo ran into trouble

11 - 15 DECEMBER ANTWERP BELGIUM

22

Performance Anti-pattern: Shot in the Dark

Developers dove into the code
 Found many ugly bits

• Interactions with database
 Wasted valuable time fixing them

• None of the ugly code bits had any consequence on
performance

 Ignored key pieces of information
• DBA reported millisecond response times
• System sometimes recovered

Developers started guessing at the cause of the problem

11 - 15 DECEMBER ANTWERP BELGIUM

23

Solution to Shot in the Dark

Measure
Don’t Guess

11 - 15 DECEMBER ANTWERP BELGIUM

24

Measure Don’t Guess

Solid Measurements
 Show you what needs to be done
 Focus efforts
 Facilitate planning
 Instill confidence
 Deflect finger pointing

11 - 15 DECEMBER ANTWERP BELGIUM

25

Measure Don’t Guess

Review all performance requirements
Construct a realistic test environment
Use “The Box” as a roadmap
Tackle one layer at a time
Start with the people
Start the investigation with the hardware
 Work up the stack

Let the user experience guide all decisions

11 - 15 DECEMBER ANTWERP BELGIUM

26

Investigative W5

Five questions asked by investigators:
 Who ?

• Who (which resource) is exhibiting the problem?
 What ?

• Observation: what do the users see?
 Where ?

• Which layer is exhibiting the problem?
 When ?

• Are there any peculiarities about when the problems occur?
 Why ?

• An explanation (hypothesis) of the observation from system
perspective

11 - 15 DECEMBER ANTWERP BELGIUM

27

Actors in the Performance Profile

What

Where

Who

11 - 15 DECEMBER ANTWERP BELGIUM

28

Simple Process

Form a hypothesis from observed behavior
Devise a test to validate the hypothesis
Measure for effect
Make changes
Test for desired effect
Repeat until performance profile is in tolerance

11 - 15 DECEMBER ANTWERP BELGIUM

29

Provide the dynamics for the system
 Use system in their own way
 Use the system at their own leisure

Need to capture the dynamics
Usage pattern
 Sequence of user actions
 Timing information

• Pauses between actions
• Time of day for activity

11 - 15 DECEMBER ANTWERP BELGIUM

30

People

System utilization is an aggregate of all usage patterns
 How system copes with the aggregation defines its

performance profile
Stress testing
 Use mix of usage patterns to load the system

• Ideally driven by a load testing tool
 Measure system activity

• Careful use of a selected tools
 Must be run against a production like environment

Goal: understand the user experience

11 - 15 DECEMBER ANTWERP BELGIUM

31

Stress Testing Environment

Production environment?
 Not desirable and usually not an option

Test environment should
 Perfectly resemble your production environment

• Data sizes, memory sizes, cache sizes, disk
speeds, network speeds, should be the same

 Be isolated
– Introduce other systems/processes in a

controlled fashion

11 - 15 DECEMBER ANTWERP BELGIUM

32

Stress Testing Environment

Caching
 Protects your application from an underlying slower

technology
 Reduces response times
 May reduce the effects of I/O waits

May need to simulate external systems
 Do this with care

Don’t extrapolate!
 Difficult to know when you will hit the wall
 E.g. Application using 15Mbits is moved from a gigabit

to 10Megabit network
• Shifts the bottleneck

11 - 15 DECEMBER ANTWERP BELGIUM

33

Stress Testing

Stress testing tool feature list
 Easily scripted to support many users doing many

different things
 Supports randomization of inputs
 Throttles request rates
 Randomized request rates
 Reports on response times (from clients perspective)
 Vary loads
 Generate high loads

Introduced Apache JMeter to JoGoSlo

11 - 15 DECEMBER ANTWERP BELGIUM

34

Apache JMeter

11 - 15 DECEMBER ANTWERP BELGIUM

35

Apache JMeter

11 - 15 DECEMBER ANTWERP BELGIUM

36

Apache JMeter

11 - 15 DECEMBER ANTWERP BELGIUM

37

Apache JMeter

11 - 15 DECEMBER ANTWERP BELGIUM

38

Apache JMeter

11 - 15 DECEMBER ANTWERP BELGIUM

39

Apache JMeter Simple Setup

Setup proxy
Use browser to generate desired traffic
Add in timers
Randomize input
Add in listeners
Configure ThreadGroup properties
Run load test

www.javapolis.com 40

Practical

11 - 15 DECEMBER ANTWERP BELGIUM

41

Instructions

Start up apachejmeter.bat
We’ll skip the proxy setup. Load mixed.jmx JMeter plan
Add random delay that ranges between 1 and 4 seconds
between calls for both keyword and wildcard
Add in a listener of your choice
Use 2 threads (concurrent users)
 Don’t forget to set the repeat count

Run and watch

11 - 15 DECEMBER ANTWERP BELGIUM

42

Hardware is our physical constraint
If we don’t have enough
 Get more
 Reduce utilization of what we have

• Strength reduction (algorithms)
• Trade one resource for another

– Caching trades memory for I/O
Judge utilization in relation to the task at hand
 Reading 1 megabyte from disk should not stress a

modern I/O channel
• Are you really reading 1 meg?

11 - 15 DECEMBER ANTWERP BELGIUM

43

Measuring Hardware Unix

System activity
 Maintained in kstat structures by the kernel
 Collection of counters

Reported on by command line tools
 Includes vmstat, mpstat, iostat
 Values reported as activity since last call
 Provides instantaneous view on how hardware is

coping with load

11 - 15 DECEMBER ANTWERP BELGIUM

44

Measuring Hardware Windows

System activity
 Maintained in registry
 Collection of counters

Reported on by taskmgr and perfmon
 Graphical windows on system performance
 perfmon is configurable
 Taskmgr has few configurations

• You can (and should) turn on reporting of system
time (CPU)

11 - 15 DECEMBER ANTWERP BELGIUM

45

CPU

High utilization is easily measurable
• vmstat (Unix) or taskmgr (Windows)

Different types of utilization
 Application
 JVM
 System/OS

11 - 15 DECEMBER ANTWERP BELGIUM

46

Application

Source
 Heavy workload

• Add CPU
 Remove processes from machine
 Inefficient algorithms

• Use method profiler to identify bottlenecks.
– prof
– hprof
– NetBeans (JFluid)

11 - 15 DECEMBER ANTWERP BELGIUM

47

Application Profiling

JVMTI interface
 New to 1.5
 Combination of old JVMPI and JVMDB interfaces
 Supported by –Xrunyourlib:parameters

• Loads yourlib (dll or so)
• Initializes with parameters

11 - 15 DECEMBER ANTWERP BELGIUM

48

Application Profiling

11 - 15 DECEMBER ANTWERP BELGIUM

49

Application Profiling

-Xprof
 Original execution profiler
 Sampling profiler

• Adds 1 to a counter for each method when it is found at the
top of stack

• Timings are inclusive
 Reports on a thread bases
 Dumps report to screen when thread dies

11 - 15 DECEMBER ANTWERP BELGIUM

50

Application Profiling

-Xrunhprof
 Original heap profiler
 Extended for thread and execution profiling
 Built off of JVMTI interface but no wire protocol
 Much more data than prof

• Best viewed with a profiling tool (HPJMeter)

11 - 15 DECEMBER ANTWERP BELGIUM

51

Java Virtual Machine

Heavily threaded (measure with vmstat)
 Runnable (r) queue consistently 2x number of CPUs
 Stresses scheduler
 Introduce thread pooling to limit activity
 Reduce number of threads in current pools

Java heap management
 Monitor gc with –verbose:gc flag
 View output with HPJTune

11 - 15 DECEMBER ANTWERP BELGIUM

52

Operating System

Context switching
 Threads not completely using quantum
 I/O
 Lock acquisition
 Interrupt handling

Memory management
 non-zero scan rates (sr) for more than a few seconds

at a time
• OS is thrashing

11 - 15 DECEMBER ANTWERP BELGIUM

53

Operating System

11 - 15 DECEMBER ANTWERP BELGIUM

54

Memory

High utilization is easily measurable
 memstat (Unix) or taskmgr (Windows)
 Can look like high CPU utilization

Real memory
Virtual memory
 An outdated optimization

Ideally we want to pin JVM into real memory
 Eliminate paging
 Reduce memory utilization
 Add memory

11 - 15 DECEMBER ANTWERP BELGIUM

55

Disk and Network I/O

Heavy utilization will most likely prevent application from
fully utilizing CPU
Source (iostat)
 Reading/writing large data sets or many network calls

• Use counters to calculate rates
• Use I/O channel specs to understand capacity
• For disk, introduce buffering in hardware or application

– E.g. Databases use paging
• For network introduce caching
• Bulk up operations

Wrap I/O calls with timer

11 - 15 DECEMBER ANTWERP BELGIUM

56

JDBC Monitoring

Common problem is interactions with database
 Can measure activity using JDBC interceptor

P6Spy looks like a JDBC driver
 Logs all JDBC calls
 Logs can be viewed with IronEye

11 - 15 DECEMBER ANTWERP BELGIUM

57

IronEye

11 - 15 DECEMBER ANTWERP BELGIUM

58

JAMon 2.2

Specify JAMon JDBC driver
Can be viewed using supplied WAR file
To bind it in without code or config changes:
 http://www.cretesoft.com/archive/newsletter.do?issue=136

www.javapolis.com 59

Practical

11 - 15 DECEMBER ANTWERP BELGIUM

60

Instructions

Make sure Tips is running
Use 30 threads (concurrent users)
 Don’t forget to set the repeat count

Run and watch the hardware
What do we see?
What do we do next?

11 - 15 DECEMBER ANTWERP BELGIUM

61

If hardware is able to cope with the load, move to
investigate JVM
Threading
 Maybe hints of problem when investigating hardware
 Examine threading with kill –3 or ctrl-break

• Dumps activity to console
• Look for many busy threads

 Control level of threading using thread pooling
• Traffic calming

11 - 15 DECEMBER ANTWERP BELGIUM

62

Java Heap Memory

Java Virtual Machine C/C++ process
 Structure depends upon OS
 Shared text
 Stack
 Heap

• Java Heap allocated from process heap
Java object allocated from Java heap space
Java heap space managed by garbage collection
 Object that are no longer reachable will be collected
 Memory that is no longer referenced will be returned

to the free list

11 - 15 DECEMBER ANTWERP BELGIUM

63

Java Heap Space

C struct defines Java object
 OOP
 Contains references to other object

• Depends on the class declaration

public class A {
 public Object x;
 public Object y;
}

struct OOP {
 int refCount;
 byte *refs;
} OOP, *OOP;
…
refs[0] = x;
refs[1] = y;

11 - 15 DECEMBER ANTWERP BELGIUM

64

Java Heap Space

Java heap maintains a references to OOP
 Reference to all object maintained in OOP table
 Root objects are at the top of object graphs

• Define live objects
Object not reachable from GC roots will be collected
 Three step process known as Mark and Sweep:

• Traverse OOP table and clear mark bit
• Traverse object graphs starting at GC roots and set mark bit
• Sweep across OOP table de-allocating OOP structures

11 - 15 DECEMBER ANTWERP BELGIUM

65

Mark & Sweep GC

11 - 15 DECEMBER ANTWERP BELGIUM

66

Mark & Sweep GC

11 - 15 DECEMBER ANTWERP BELGIUM

67

Mark & Sweep GC

Triggered on allocation failure
 new Object(); fails

Needs exclusive access to all of heap
 Cannot share heap with application threads
 Concurrency issue known as “stop-the-world” GC

Single threaded
Must manage entire heap space
 Large heaps == long pauses

11 - 15 DECEMBER ANTWERP BELGIUM

68

Mark & Sweep GC Optimizations

When GC runs only 1 CPU is hot
 Develop multi-threaded GC algorithms
 Still have pause times but hopefully shorter

Application pauses
 Develop concurrent GC algorithms
 Application and GC can run together
 Reduced contention == reduced pause time
 Higher overhead (ie trading CPU for shorter pause)

11 - 15 DECEMBER ANTWERP BELGIUM

69

Mark & Sweep GC Optimizations

Most Objects live for less than 100 µs or for a long time
 IBM defines pinned clusters, wilderness (not so

generational)
 Sun/HP/JRocket added Generation Spaces

Generational spaces
 Choose a different collector for young and old
 Collect young first
 Collect old only when there will not be enough room

for old objects

11 - 15 DECEMBER ANTWERP BELGIUM

70

Object Lifespan

11 - 15 DECEMBER ANTWERP BELGIUM

71

Sun Generational Spaces

11 - 15 DECEMBER ANTWERP BELGIUM

72

Generational Spaces

Heap sizing
 Can size generational spaces using ratios or absolute

sizes
-Xmx defines maximum size of entire heap
-XX:MaxNewSize=<N>
-XX:NewRatio
 Ratios: 8 for -client and 2 for -server

-XX:SurvivorRatio
-XX:PermSize=<size>
-XX:MaxPermSize=<size>
Old space is what is left over

11 - 15 DECEMBER ANTWERP BELGIUM

73

Survivor Spaces

e.g. new size = 2M, Survivor ratio = 8
Eden = 2M – 2M / (8 + 2) * 2
 = 2048K – 204.8K
 = 1843.2K
Each Survivor Space = 102.4K

11 - 15 DECEMBER ANTWERP BELGIUM

74

Monitoring GC

-verbose:gc prints one log record for every GC event
 -Xloggc:file

Log entries provides a picture on how
 your application is behaving
 GC is coping

Want to calculate GC throughput
Want to find long GC pause times

11 - 15 DECEMBER ANTWERP BELGIUM

75

GC Throughput

“Time application is suspended by GC” divided by “total
run time”
E.g. 5 minutes of a 20 minute runtime is spent
performing GC
25% efficiency
GC bottleneck
Requires many records to calculate
 Better tooling

GCViewer (TagTram)
HPJTune (HP)

11 - 15 DECEMBER ANTWERP BELGIUM

76

Tagtram GCViewer

11 - 15 DECEMBER ANTWERP BELGIUM

77

HP JTune

11 - 15 DECEMBER ANTWERP BELGIUM

78

HP JTune Heap Usage After GC

11 - 15 DECEMBER ANTWERP BELGIUM

79

HP JTune Pause Time

11 - 15 DECEMBER ANTWERP BELGIUM

80

Heap/GC Tuning

Use graphics to decide how to tune memory
 Let the user experience to temper your choices

Strategy: eliminate full GC
 Adjust size of total heap and survivor spaces
 Tune other parameters as needed

Strategy: eliminate long pauses
 Use Parallel (if multi-cored)
 Use concurrent if you can tolerate overhead

11 - 15 DECEMBER ANTWERP BELGIUM

81

Heap/GC Tuning

Tuning GC cannot eliminate
 Extremely high rates of churn
 Temporal or permanent memory leaks

Need to fix the problem in the code
 Use a memory profiler to direct your search

-Xrunhprof:heap=all
 Dumps heap when JVM exits
 Dumps with kill -3 or ctrl-break

-XX:+HeapDumpOnOutOfMemoryError
 New for latest version of 1.6, 1.5, and 1.4

11 - 15 DECEMBER ANTWERP BELGIUM

82

Heap Dump

Contains enough information to reconstruct a picture of
memory
Picture contains references to all objects
 Dead objects held by OOP table
 Live objects

Call GC twice before dumping heap
Data volume and complexity calls for tooling
 HPJMeter

11 - 15 DECEMBER ANTWERP BELGIUM

83

HPJMeter

Read hprof dump
 Limited to single snapshot

Provides rudimentary views of heap
 Live object numbers and sizes
 Dead objects numbers and sizes

Can guess at memory leaks
 Single snapshot analysis is limited
 Can be good enough if you are methodical

Memory leaks usually are found in collections
 Strategy: focus on collections

11 - 15 DECEMBER ANTWERP BELGIUM

84

HPJMeter Live Object View

11 - 15 DECEMBER ANTWERP BELGIUM

85

HPJMeter Leak Detection

www.javapolis.com 86

Practical

11 - 15 DECEMBER ANTWERP BELGIUM

87

Instructions

Let’s profile heap with JVM switch –Xrunhprof:heap=all
 For fun, add switch –Xloggc:gc.log

Restart application server and run JMeter plan
Confirm that there is a memory leak with HPJTune
 Open gc.log
 Look at “Heap Usage After GC”
 Look at “GC Duration”

Open HPJMeter and find the leak
 You may need to shut down everything first

11 - 15 DECEMBER ANTWERP BELGIUM

88

The only problem left is lock contention
Characterized by inability to utilize CPU
 Similar to I/O bound (call to external system)

High system time (% of total)
 Locks are a kernel resource

Find by performing a thread dump (kill -3)
 For live lock you may need many thread dumps

Techniques to educe lock contention is an emerging
topic

11 - 15 DECEMBER ANTWERP BELGIUM

89

If you haven’t found anything
 Re-investigate the people

• Are they really doing what you think they are doing?
• Read logs
• Visit the floor and watch
• Re-do usage patterns

– Compare JMeter scripts with real life
• Re-test

 Validate that QA == Production
• Even the smallest difference can hide the problem

11 - 15 DECEMBER ANTWERP BELGIUM

90

JoGoSlo Reload

Introduced Apache JMeter
Introduced HPJTune to monitor memory
Confirmed memory leak hypothesis
 Resting the application allowed application to recover
 Recovery was tied to HttpSessionState timeout

• Developers were working on persistence framework
Isolated memory leak to single usage pattern
 Filtered off a vast majority of the application
 Identified, fixed and re-tested with-in budget

11 - 15 DECEMBER ANTWERP BELGIUM

91

Summary

Systems are dynamic, code is static
Be methodical
Review performance requirements
Prepare stress testing environment
Define Usage patterns
Investigate hardware, JVM, and Application
Use measurements from tooling to direct your efforts
Let the user experience guide your decisions

11 - 15 DECEMBER ANTWERP BELGIUM

92

Measure
Don’t
Guess

www.javapolis.com 93

Q&A

11 - 15 DECEMBER ANTWERP BELGIUM

94

Thank you for your attention!

